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RELATIVISTIC FOCUSING AND BEAT WAVE PHASE VELOCITY
CONTROL IN THE PLASMA BEAT WAVE ACCELERATOR

Introduction

Recently there has been much interest in plasma based accelerator schemes, such as

the plasma beat wave accelerator (PBWA),' - 3 for producing ultra-high energy electrons.

This has led to a renewed interest in the study oi the propagation of intense radiation beams

through a plasma.4 - " In the PBWA two colinear radiation beams of frequencies w1 ,W2
are incident on a umiorm plasma. By appropriately choosing the difference il lhe i a.e

frequencies to be equal to the electron plasma frequency wp, Aw = wl - ,2 = wp, where

wP/w? << 1, it is possible for the radiation beat wave to resonantly drive large amplitude

electron plasma waves. In the ideal wave breaking limit,' 4 the maximum accelerating

electric field Em is given by E, (mtc 2 /e)wp/c " .97. ,yi eV/cm where np is the plasma

density in cm - . For example, np = 1.6 x 1016 cm - 3 gives Em _ 120 MeV/cm which

implies that an electron could be accelerated to 1.2 TeV in 100 meters.

To realize such an acceleration scheme it is necessary that i) the radiation beallis

propagate at high intensity over distances large compared to the Rayleigh length ZR =

r /2c, where r, is the radiation spot size, and that ii) phase resonance between the

accelerating electrons and the plasma wave be maintained over an equally large distance.

In vacuum, radiation diffracts over distances on the order of ZR, which can be relatively

short. Hence, in order to maintain high intensity beams it is necessary to rely on focusing

enhancement from the plasma. In the PBWA the phase velocity of the plasma wave is
equal to the phase velocity of the radiation beat wave which, in the 1-D limit, is given by

vp/c = Aw/Ak = 1 - w'/2w', where Ak = k, - k2 is the difference in th*. wave numbers

of the two beams. Since the velocity of an ultra-relativistic electron is approximately the

speed of light, the electrons out run the plasma wave and become "detuned" in a length"5

Ld A W A /w., where A1, = 21rc/wp. For wl/wp = 25 and np = 1.6 x 1016 cm - 3 , this gives

L," 16 cm and a maximum electron energy gain of AE - ELd - 2 GeV. In order to

increase the energy gain beyond this detuning limit, it is necessary to increase the phase

velocity of the plasma beat wave.

This paper addresses the two points mentioned above concerning the realization of

the PBWA. As is shown below, matched beam solutions are possible in which the two

radiation beams propagate with constant spot sizes provided the radiation is of stuffici ntlv

high power. This allows the radiation beams to propagate over distances larger than

the Rayleigh length while maintaining their high intensities. For example, two radiation

beams with equal spot sizes are matched provided t.h, power in each beam is P = P, 3.
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where P, : 17 x 10'w 2/wP W is the power threshold for relativistic focusing of a single

radiation beam in a plasma. 4" In addition, by including finite radial beam profiles along

with relativistic focusing, the phase velocity of the beat wave can be tuned to the speed

of light. This is accomplished by appropriately choosing the initial spot sizes and powers
of the radiation beams. Hence, phase resonance between the electron and beat wave can

be maintained beyond the 1-D detuning length Ld and, consequently, substantially higher

electron energies can be achieved. Figure 1 shows schematically the propagation of two

matched radiation beams through a plasma with the resulting beat wave phase velocity
equal to the speed of light.

Focusing of radiation beams in a plasma occurs through the combined effects of rela-

tivistic, ponderomotive and thermal self-focusing.4 -13 Typically these processes occur on

widely separate time scales. Relativistic focusing 4- 8 occurs on the shortest time scale,
rR - 1/w, which is the time scale at which the electrons respond to the radiation field.

Ponderomotive focusing -" depends on the expulsion of ions from the radiation chan-

nel and thus occurs on a time scale given roughly by 'rp r./C,, where C, is the ion

acoustic speed. Thermal focusing1'2 ,
3 relies on heating of the plasma by the radiation

beam and typically occurs on an even longer scale. This paper is concerned with rela-

tivistic focusing, and hence the analysis is applicable to lasers with pulse lengths TL in

the range rR < -rL < -rp, which is the region of interest for the PBWA. Physically, rela-
tivistic focusing arises solely from the relativistic electron quiver velocity, Vq = ca, /-r-L,

in the combined radiation field. Here aj = eA±/mc2 is the normalized radiation vector

potential and 'yj = /T + a2_ is the relativistic gamma factor for an electron in a helically

polarized radiation field. The focusing mechanism for a single beam is that a radiation

profile peaked on axis leads to an index of refraction profile, n 1 - (,p/w)2 /2-y±, which

has a minimum on axis. The radiation beam, therefore, focuses along the axis.' When

the radiation power is greater than the critical power P, for relativistic self-focusing, it is

possible for the envelope of a single radiation beam to propagate at a constant spot size.T

For two colinear beams, however, the situation is more complicated due to the coupling

of one beam to the other through the relativistic gamma factor. The analysis presented

below indicates that matched beam propagation for two beams is only possible for a finite

range of the parameter R, such that 1/(v/8 - 1) < R < 0 - 1. where R = (r,l /r,l )2 is

the square of the ratio of the spot sizes of the two beams. The radiation power required

to obtain matched beam propagation for two beams is near that for a single beani. P.

Control of the beat wave phase velocity is most easily understood by the following

heuristic argument. The finite radial extent of the radiation beams gives rise to a small
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effective perpendicular wave number k1 . Here k1 is a function not only of the spot size

but also of the power due to the relativistic focusing effects. The existence of k1 gives

rise to an effective parallel wave number given by kll !:_ (1 - wp/2w2 - c2 k±/2w2 )w/c.

Hence, the parallel phase velocity of the beat wave is now given by vp/c 1_ 1 - w/2w2 +

(k21 - k2 2 )c2 /2wwp. By appropriately choosing the initial spot sizes and powers of the

two radiation beams, it is possible to have the last term in the expression for vp/c cancel

the second term thus providing vp = c.

Analysis of Radiation Focusing and Beat Wave Phase Velocity Control

The analysis starts with the wave equation for the vector potential of the conibin'-d

radiation field, (V2 - c-8 2 /&tI)A± = -(4ir/c)J±, where J± is the transverse current

density. In order to study the effects of relativistic focusing alone, only the current resulting

from the electron quiver motion is needed, J± = -enpVq. The wave equation is then given

by
(P 122 --1/2,

( _a±= a. (1 + alI' + ja 2 -L 21aIa 21cosA1/) (1)

where a± = a, + a2 . Throughout the following, a subscript 1 refers to the radiation beam

of frequency wl, and a subscript 2 refers to the radiation beam of frequency w2. The factor

within the square root is the relativistic gamma factor 7±, assuming helically polarized

radiation. Here, A4 = Pj -- t2 is the phase of the beat wave and ('1,2 = kl,-z-W l.t4 2 ,

where 01,2 is the slowly evolving phase of the radiation field.

In order to examine the qualitative diffractive properties of the radiation beams, it is

helpful to consider the index of refraction nl, 2 of each beam. The approximate index of

refraction associated with each beam is obtained in the following manner. First, tile I-D

limit of the left hand side of Eq. (1) is taken, assuming a - exp(i$I). Next, Eq. (1) is

divided by the phase factor exp(iZ) of either beam 1 or 2 and then averaged over a period

of the beat phase Al. In the mildly relativistic limit 1al,212 < 1, the index of refraction

for each beam is given by

n- klc/w = I -(w /2w)(1 - jai 12/2 - lal 2"), (2a)

n2= k 2 c/w 2 = 1 - (w/2w2)(1 - lai 1- a2 12 /2). (2b)

In the above expressions, the first term (the unity) represents vacuum diffraction while the

second term is the contribution from the ambient plasma. The remaining terms represent

focusing from the radiation fields. More specifically, a term proportional to (lai 2 2 la, 2) '2
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results from the individual contributions of beam 1 and 2 to the relativistic factor 7±,

while the remaining term proportional to jai, 2 12 /2 results from the contribution of the

beat wave to -y. Radiation focusing occurs when cn/or < 0. Hence, the contribution

from the radiation terms to n1 ,2 provide focusing for radiation profiles peaked on axis. For

sufficiently high power, these focusing terms dominate the vacuum diffraction and provide

overall focusing of the radiation beams.

Envelope equations describing the evolution of the spot size r,(z) of each beam are

derived by applying the "source-dependent expansion" (SDE)1'6 17 to Eq. (1). This is

accomplished by expanding the normalized vector potential al,2 for each beam into a

series of Gaussian-Laguerre polynomials and using orthogonality properties to determine
their coefficients. The SDE differs from the typical vacuum modal expansion in that the

parameters characterizing the Gaussian-Laguerre polynomials, such as the width of the

Gaussian, are functions of z which depend on the "source", i.e. the right hand side of

Eq. (1). Assuming that each beam is adequately described by the lowest order Gaussian

mode a = laoo Iexp[i/3 -(1 - ia)r 2 /rf], then the parameters lao0, 13, a and r, are given

by Iaoo(z)l = aor.o/r,(z), a(z) = (w/4c)dr2/dz along with the following equations:

4r 2  1 -8W 1\+ (3a)
t wr~WI(1 + R)

d2  4c 2 [ w( 8W1 1 )]bdz-- s2 _ - 1- W, 1 W+ IR) (3b)
Z2 ;22 r32  22(1+ R)2

d 2c 1 + - , 3 4W 2,R(l + 2R)
0 11 = - -2- 2' " ' -+ ( 4 a )

dz 2, r., a 4c (2 W (1 +R) 2 /J 4.

2c 1 (3 4r
j- wr~ [2 + -p, -, +_ -W 1W2 2 4c 2  (2 W1+ R 2)] (4b)

where the mildly relativistic limit was taken, Iai, 2
12 < 1. Physically, W = (Wpaoro/4c)2 =

P/Pc where P is the power in one of the beams and P, is the critical power necessary

for relativistic focusing of a single beam.7 Here aq and ro are the initial amplitude of
the vector potential on axis and the initial 3pot size of each beam. The parameter a is

related to the curvature of the radiation wavefront and the parameter 3 is important in

that it represents a correction to the parallel wave number on axis k1 = ;/c + d3/dz. This

relation is used below to determine the beat wave phase velocity on axis.

Equations (3a) and (3b) describe the envelope evolution for each beam as it propagates

through the plasma. Setting the right-hand sides of Eqs. (3a) and (3b) equal to zero gives
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matched beam solutions for which the beams propagate without diffracting. Matched beam
solutions are obtained for values of R in the range 1/(vi - 1) < R < v/g - 1 provided tile
normalized power W of each beam is given by

W, = [8R 2 (1 + R) 2 - (1 + R)4][64R 2 - (1 + R) 4 ]', (5a)

W2 = [8(l + R)2 - (1 + R)4 )[64R 2 - (1 + R) 4]- '. (5b)

This is illustrated in the following limits: For R = 1, then W, = W 2 = 1/3. As R -
1/(v/8--1), then W, - 0 and W 2 --- 1. As R -- v/8- -1, then W, -. 1 and W2 - 0.
Hence, it is possible for a beam close to the critical power to confine a second beam which

has a smaller spot size and a smaller power.

Matched beam propagation occurs when R, W, and W2 are specified as indicated

above. For example, once R is chosen in the range 1/(v/8 - 1) < R < v/8 - 1, then W1

and W2 are given by Eqs. (5a) and (5b). The actual magnitudes of the spot sizes r,1 and
r, 2 are undetermined and only their ratio has been specified. Specifying a value for r,
gives a value for the radiation beat wave phase velocity on axis according to the relation
c/vP = 1 + cAfI /Aw, where A,8' = do3/dz- d/32/dz. Alternatively, requiring vp = C

for a given set of matched beam parameters R, W, and W2 specifies r, 1 . For example,

as R - v/8 -1, requiring vp= c gives k2r, - 5w,/Aw, where k , = wp/c. For R = 1,
requiring v, = c gives k r, :-- 2. As R -- 1/(v/8- 1), it is not possible to have t, = c. For

applications in the PBWA, it may be desirable to have kprl >> 1. This implies that it
may be desirable to choose a matched beam case with R > 1. For example, R = 1.5 gives

W, _ 0.7, W 2 : 0.1 andk~r, = 2.6w,/Aw.

As a final illustration, the above results are applied to parameters similar to those in
the UCLA beat wave excitation experiment," where wl  _ 2.0 x 1014 sec - 1 and Aw w _
9.7 x 10- 2 (which implies n, 10"7 cm- 3 ). A test electron with intial energy given by

70 = 50 is accelerated by plasma waves generated in the following two special cases: i) A
matched beam case with the beat wave phase velocity tuned to the speed of light, v, = c.
where R = 1.5, rsl = 8.3 x 10- 3 cm, P, = 1.3 x 1012 W and P, = 1.6 < 1011 W; and

ii) the same parameters as case i) only now the beat wave phase velocity is given by the

1-D limit, vp/c = 1 - w/2w2, and the radiation beams are assumed to undergo vacuum

Rayleigh diffraction, r8 = r0(1 + :2/4 )1/a. The results of case ii) are shown in Fig. 2
and the results of case i) are shown in Fig. 3. Figure 2 indicates that the test electron

outruns the plasma wave and begins to be deaccelerated after approximately 0.5 cm with
a maximum energy gain of A-y = 210. In Fig. 3, however, phase resonance between the
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electron and beat wave is maintained which allows an energy gain of AY a- 6500 in 8 cm.

This energy gain continues in a linear fashion until it becomes limited by some non-ideal

effect such as pump depletion.19

Discussion

In summary, it has been shown that two colinear, short-pulse, Gaussian radiation

beams can propagate through a uniform plasma without diffracting due to relativistic

focusing. This occurs for values of R in the range 1/(v/8 - 1) < R < v'8 - 1, provided W,

and W 2 are specified according to Eqs. (5a) and (5b). In addition, it is possible to tune

the phase velocity of the radiation beat wave to the speed of light for cases where R > 1.

This is accomplished by appropriately choosing r,,. In an actual PBWA, Aw = WP and the

envelope behavior of the radiation beams becomes more complicated due to the presence

of large amplitude resonantly driven plasma waves.2" However, the analysis presented here

remains valid for the front of the radiation pulse (the first several plasma wavelengths)

where the amplitude of the plasma wave remains small. In the small amplitude linit, the

phase velocity of the plasma wave is equal to that of the radiation beat wave.21 Assuming

that the phase velocity of the plasma wave remains fixed to its initial value, then the above

analysis indicates that it is possible to tune this phase velocity to the speed of light. This

implies that phase detuning between the plasma wave and the electrons can, in principle,

he avoided which results i. a substantiallv higher energy gain in the PBWA.
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